

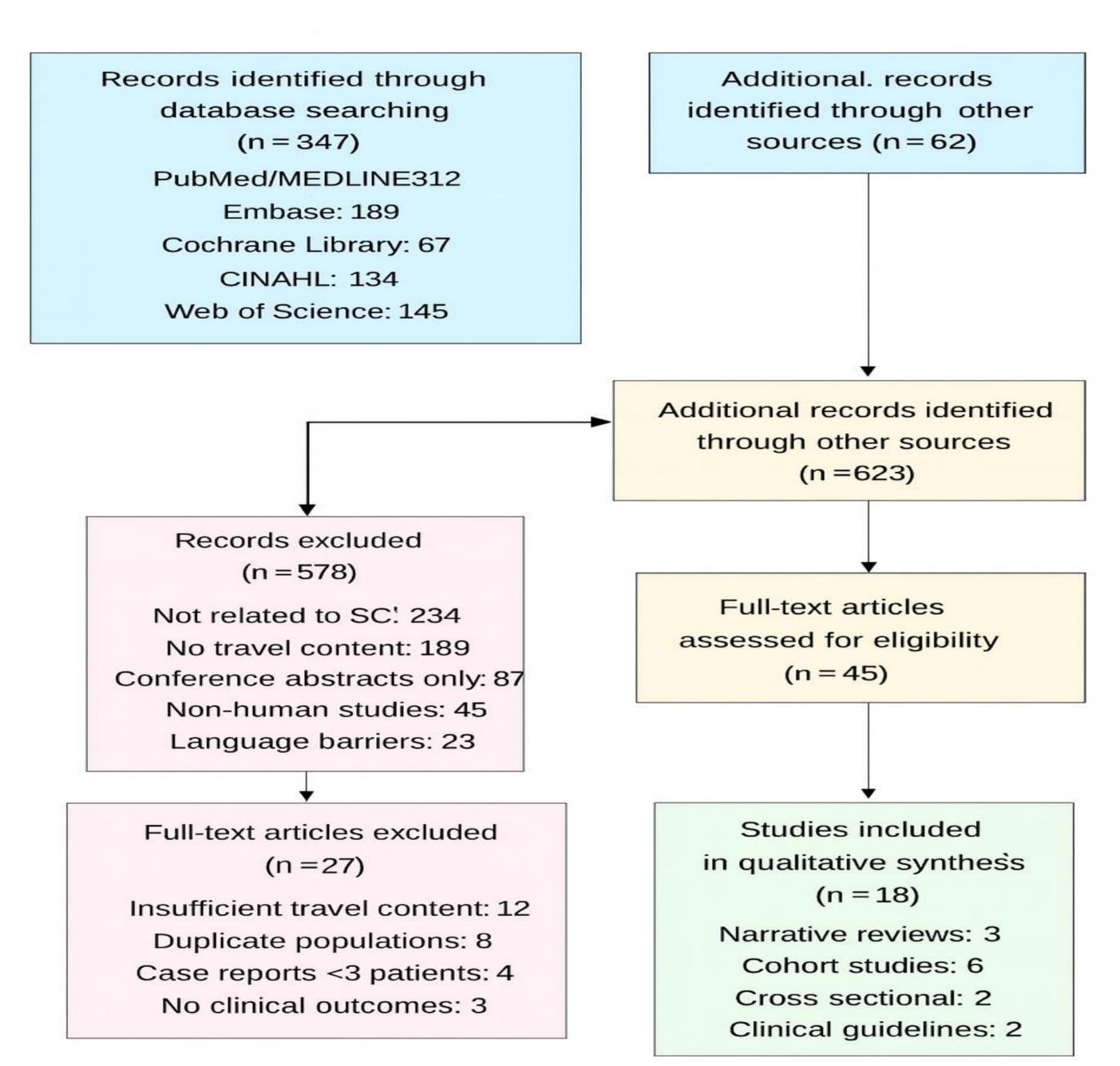
TRAVEL MEDICINE FOR SICKLE CELL DISEASE

MAPPING THE RESEARCH LANDSCAPE

Abdulrahman Nasiri ¹, Manal Alshammri ², Mostafa Saleh ³, Reem Alkharras ⁴

1 College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia. 2 Department of Hematology, Oncology center, King Salman Specialist Hospital, Hail, Saudi Arabia. 3 King Faisal Specialist Hospital & Research Centre, Hematology department, Riyadh, Saudi Arabia. 4 Department of Internal Medicine, Security Forces Hospital, Riyadh, Saudi Arabia.

BACKGROUND


Sickle cell disease affects over 20 million people worldwide, yet travel related health considerations for this population remain poorly understood. With increasing global mobility, clinicians need evidence-based guidance for managing travel risks in sickle cell patients.

<u>AIM</u>

To systematically review existing research on travel medicine considerations for individuals with sickle cell disease.

METHODS

We conducted a scoping review following PRISMA-ScR guidelines. We searched PubMed, Embase, Cochrane Library, CINAHL, and Web of Science from inception through December 2024. Studies involving human subjects with sickle cell disease and travel-related content were included. Two reviewers independently screened articles and extracted data using standardized forms.

RESULTS

From 870 records, 18 studies met inclusion criteria, published between 1955- 2024. Studies included 6 cohort studies, 5 case series, 3 narrative reviews, 2 cross-sectional studies, and 2 clinical guidelines. Commercial aviation appears relatively safe for most sickle cell patients, with complication rates of 1.4% reported in the largest series. High-altitude exposure carries substantial risks, with crisis rates ranging from 20% at 4,400 feet to 66% at 6,320 feet. Recent data suggest sickle cell trait may not be benign at high altitudes, with increased risks of kidney disease, pulmonary embolism, and pregnancy complications. Infectious diseases represent the primary concern for pediatric travelers to endemic regions.

Aviation Safety

Safe for most SCD patients, ~1,4% complication rate in largst series

Routine oxygen not required unless baseline hypoxia

High Altitude Risks

4.400 ft

20% crisis rate (HbSC, HbS-β+)

△ 6.320 ft

66% crisis rate (HbSS, HbS-β+)

Infectious Disease Risks

Highest risk for children: malaria, bacterial sepsis

Functional asplenia = vulnerability to encapsulated bacteria

HbSS patients also at risk (~38%).

CONCLUSION

Travel medicine for sickle cell disease has evolved from restrictive policies to individualized risk assessment. While aviation safety has improved, high altitude exposure and infectious disease risks require careful evaluation. Research gaps include standardized risk assessment tools, pediatric guidelines, and pregnancy specific recommendations.

REFERENCES

1.Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. The Lancet. 2013;381(9861):142-51. doi: 10.1016/S0140-6736(12)61229-X.

2.Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. The Lancet. 2010;376(9757):2018-31. doi: 10.1016/S0140-6736(10)61029-X.

3.Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, et al. Pain in Sickle Cell Disease. New England Journal of Medicine. 1991;325(1):11-6. doi: doi:10.1056/NEJM199107043250103.

4.Rogers DW, Clarke JM, Cupidore L, Ramlal AM, Sparke BR, Serjeant GR. Early deaths in Jamaican children

with sickle cell disease. British Medical Journal. 1978;1(6126):1515-6. doi: 10.1136/bmj.1.6126.1515. 5. Serjeant GR. The natural history of sickle cell disease. Cold Spring Harb Perspect Med. 2013;3(10):a011783. Epub 20131001. doi: 10.1101/cshperspect.a011783. PubMed PMID: 23813607; PubMed Central PMCID: PMC3784812.

6.Pinto VM, De Franceschi L, Gianesin B, Gigante A, Graziadei G, Lombardini L, et al. Management of the Sickle Cell Trait: An Opinion by Expert Panel Members. Journal of Clinical Medicine. 2023;12(10):3441. PubMed PMID: doi:10.3390/jcm12103441.

7.Willen SM, Thornburg CD, Lantos PM. Travelers with sickle cell disease. J Travel Med. 2014;21(5):332-9. Epub 20140619. doi: 10.1111/jtm.12142. PubMed PMID: 24947546; PubMed Central PMCID: PMC4146746. 8.Medical Guidelines for Airline Travel, 2nd ed. Aviat Space Environ Med. 2003;74(5 Suppl):A1-19. PubMed PMID: 12817610.

9.Long ID. Sickle cell trait and aviation. Aviat Space Environ Med. 1982;53(10):1021-9. PubMed PMID: 6184047. 10.Obadina M, Morris S, Alin T, LeVarge B, Little JA. High-Altitude Hypoxia Is Common in Adults with Sickle Cell Disease. Blood. 2023;142(Supplement 1):3894-. doi: 10.1182/blood-2023-182439.

11. Scourfield LEA, Nardo-Marino A, Williams TN, Rees DC. Infections in sickle cell disease. Haematologica. 2025;110(3):546-61. doi: 10.3324/haematol.2024.285066.

12.Ware M, Tyghter D, Staniforth S, Serjeant G. Airline travel in sickle-cell disease. The Lancet. 1998;352(9128):652. doi: 10.1016/S0140-6736(05)79607-0.

13.Green RL, Huntsman RG, Serjeant GR. The sickle-cell and altitude. Br Med J. 1971;4(5787):593-5. doi: 10.1136/bmj.4.5787.593. PubMed PMID: 5130214; PubMed Central PMCID: PMC1799937.

14. Padda A, Corriveau-Bourque C, Belletrutti M, Bruce AAK. Supplemental oxygen therapy recommendations in patients with sickle cell disease during air travel: A cross-sectional survey of North American health care providers. Paediatr Child Health. 2020;25(2):107-12. Epub 20190423. doi: 10.1093/pch/pxz049. PubMed PMID: 33390748; PubMed Central PMCID: PMC7757762.

CONTACT

Dr. Abdulrahman Nasiri, MD - Assistant Professor of Medicine & Hematology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU). Email: **amnasiri@imamu.edu.sa**